Python图像锐化与边缘检测之Sobel与Laplacian算子详解

  # -*- coding: utf-8 -*-

  # By:Eastmount

  import cv2

  import numpy as np

  import matplotlib.pyplot as plt

  #读取图像

  img = cv2.imread('luo.png')

  lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

  #灰度化处理图像

  grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

  #高斯滤波

  gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)

  #阈值处理

  ret, binary = cv2.threshold(gaussianBlur, 127, 255, cv2.THRESH_BINARY)

  #Roberts算子

  kernelx = np.array([[-1,0],[0,1]], dtype=int)

  kernely = np.array([[0,-1],[1,0]], dtype=int)

  x = cv2.filter2D(binary, cv2.CV_16S, kernelx)

  y = cv2.filter2D(binary, cv2.CV_16S, kernely)

  absX = cv2.convertScaleAbs(x)

  absY = cv2.convertScaleAbs(y)

  Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

  #Prewitt算子

  kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)

  kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)

  x = cv2.filter2D(binary, cv2.CV_16S, kernelx)

  y = cv2.filter2D(binary, cv2.CV_16S, kernely)

  absX = cv2.convertScaleAbs(x)

  absY = cv2.convertScaleAbs(y)

  Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

  #Sobel算子

  x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)

  y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)

  absX = cv2.convertScaleAbs(x)

  absY = cv2.convertScaleAbs(y)

  Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

  #拉普拉斯算法

  dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)

  Laplacian = cv2.convertScaleAbs(dst)

  #效果图

  titles = ['Source Image', 'Binary Image', 'Roberts Image',

  'Prewitt Image','Sobel Image', 'Laplacian Image']

  images = [lenna_img, binary, Roberts, Prewitt, Sobel, Laplacian]

  for i in np.arange(6):

  plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')

  plt.title(titles[i])

  plt.xticks([]),plt.yticks([])

  plt.show()