微信跳一跳自动运行python脚本

  # coding: utf-8

  '''

  # === 思路 ===

  # 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,

  # 根据两个点的距离乘以一个时间系数获得长按的时间

  # 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,

  # 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,

  # 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标

  # 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,

  # 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,

  # 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,

  # 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标

  # 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)

  '''

  import os

  import sys

  import subprocess

  import time

  import math

  from PIL import Image

  import random

  from six.moves import input

  import debug, config

  import numpy as np

  VERSION = "1.1.1"

  debug_switch = False # debug 开关,需要调试的时候请改为:True

  config = config.open_accordant_config()

  # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置,设置保存在 config 文件夹中

  under_game_score_y = config['under_game_score_y']

  press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节

  piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节

  piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节

  screenshot_way = 2

  def pull_screenshot():

  '''

  新的方法请根据效率及适用性由高到低排序

  '''

  global screenshot_way

  if screenshot_way == 2 or screenshot_way == 1:

  process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)

  screenshot = process.stdout.read()

  if screenshot_way == 2:

  binary_screenshot = screenshot.replace(b'

  ', b'

  ')

  else:

  binary_screenshot = screenshot.replace(b'

  ', b'

  ')

  f = open('autojump.png', 'wb')

  f.write(binary_screenshot)

  f.close()

  elif screenshot_way == 0:

  os.system('adb shell screencap -p /sdcard/autojump.png')

  os.system('adb pull /sdcard/autojump.png .')

  def set_button_position(im):

  '''

  将 swipe 设置为 `再来一局` 按钮的位置

  '''

  global swipe_x1, swipe_y1, swipe_x2, swipe_y2

  w, h = im.size

  left = int(w / 2)

  top = int(1584 * (h / 1920.0))

  left = int(random.uniform(left-50, left+50))

  top = int(random.uniform(top-10, top+10)) # 随机防 ban

  swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top

  def jump(distance):

  '''

  跳跃一定的距离

  '''

  press_time = distance * press_coefficient

  press_time = max(press_time, 200) # 设置 200ms 是最小的按压时间

  press_time = int(press_time)

  cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(

  x1=swipe_x1,

  y1=swipe_y1,

  x2=swipe_x2,

  y2=swipe_y2,

  duration=press_time

  )

  print(cmd)

  os.system(cmd)

  return press_time

  def find_piece_and_board(im):

  '''

  寻找关键坐标

  '''

  w, h = im.size

  piece_x_sum = 0

  piece_x_c = 0

  piece_y_max = 0

  board_x = 0

  board_y = 0

  scan_x_border = int(w / 8) # 扫描棋子时的左右边界

  scan_start_y = 0 # 扫描的起始 y 坐标

  im_pixel = im.load()

  # 以 50px 步长,尝试探测 scan_start_y

  for i in range(int(h / 3), int(h*2 / 3), 50):

  last_pixel = im_pixel[0, i]

  for j in range(1, w):

  pixel = im_pixel[j, i]

  # 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环

  if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:

  scan_start_y = i - 50

  break

  if scan_start_y:

  break

  print('scan_start_y: {}'.format(scan_start_y))

  # 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3

  for i in range(scan_start_y, int(h * 2 / 3)):

  for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销

  pixel = im_pixel[j, i]

  # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来

  if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):

  piece_x_sum += j

  piece_x_c += 1

  piece_y_max = max(i, piece_y_max)

  if not all((piece_x_sum, piece_x_c)):

  return 0, 0, 0, 0

  piece_x = int(piece_x_sum / piece_x_c)

  piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半

  # 限制棋盘扫描的横坐标,避免音符 bug

  if piece_x < w/2:

  board_x_start = piece_x

  board_x_end = w

  else:

  board_x_start = 0

  board_x_end = piece_x

  for i in range(int(h / 3), int(h * 2 / 3)):

  last_pixel = im_pixel[0, i]

  if board_x or board_y:

  break

  board_x_sum = 0

  board_x_c = 0

  for j in range(int(board_x_start), int(board_x_end)):

  pixel = im_pixel[j, i]

  # 修掉脑袋比下一个小格子还高的情况的 bug

  if abs(j - piece_x) < piece_body_width:

  continue

  # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来

  if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:

  board_x_sum += j

  board_x_c += 1

  if board_x_sum:

  board_x = board_x_sum / board_x_c

  last_pixel = im_pixel[board_x, i]

  # 从上顶点往下 +274 的位置开始向上找颜色与上顶点一样的点,为下顶点

  # 该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误

  for k in range(i+274, i, -1): # 274 取开局时最大的方块的上下顶点距离

  pixel = im_pixel[board_x, k]

  if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:

  break

  board_y = int((i+k) / 2)

  # 如果上一跳命中中间,则下个目标中心会出现 r245 g245 b245 的点,利用这个属性弥补上一段代码可能存在的判断错误

  # 若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低

  for l in range(i, i+200):

  pixel = im_pixel[board_x, l]

  if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:

  board_y = l+10

  break

  if not all((board_x, board_y)):

  return 0, 0, 0, 0

  return piece_x, piece_y, board_x, board_y

  def check_screenshot():

  '''

  检查获取截图的方式

  '''

  global screenshot_way

  if os.path.isfile('autojump.png'):

  os.remove('autojump.png')

  if (screenshot_way < 0):

  print('暂不支持当前设备')

  sys.exit()

  pull_screenshot()

  try:

  Image.open('http://www.jb51.net/article/autojump.png').load()

  print('采用方式 {} 获取截图'.format(screenshot_way))

  except Exception:

  screenshot_way -= 1

  check_screenshot()

  def yes_or_no(prompt, true_value='y', false_value='n', default=True):

  default_value = true_value if default else false_value

  prompt = '%s %s/%s [%s]: ' % (prompt, true_value, false_value, default_value)

  i = input(prompt)

  if not i:

  return default

  while True:

  if i == true_value:

  return True

  elif i == false_value:

  return False

  prompt = 'Please input %s or %s: ' % (true_value, false_value)

  i = input(prompt)

  def main():

  '''

  主函数

  '''

  op = yes_or_no('请确保手机打开了 ADB 并连接了电脑,然后打开跳一跳并【开始游戏】后再用本程序,确定开始?')

  if not op:

  print('bye')

  return

  print('程序版本号:{}'.format(VERSION))

  debug.dump_device_info()

  check_screenshot()

  i, next_rest, next_rest_time = 0, random.randrange(3, 10), random.randrange(5, 10)

  while True:

  pull_screenshot()

  im = Image.open('http://www.jb51.net/article/autojump.png')

  # 获取棋子和 board 的位置

  piece_x, piece_y, board_x, board_y = find_piece_and_board(im)

  ts = int(time.time())

  print(ts, piece_x, piece_y, board_x, board_y)

  set_button_position(im)

  jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))

  if debug_switch:

  debug.save_debug_screenshot(ts, im, piece_x, piece_y, board_x, board_y)

  debug.backup_screenshot(ts)

  i += 1

  if i == next_rest:

  print('已经连续打了 {} 下,休息 {}s'.format(i, next_rest_time))

  for j in range(next_rest_time):

  sys.stdout.write('

  程序将在 {}s 后继续'.format(next_rest_time - j))

  sys.stdout.flush()

  time.sleep(2)

  print('

  继续')

  i, next_rest, next_rest_time = 0, random.randrange(30, 100), random.randrange(10, 60)

  time.sleep(np.random.uniform(0.6,0.9)) # 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban

  if __name__ == '__main__':

  main()