⑴秒杀活动是指网络商家为促销等目的组织或网上限时抢购活动,这种活动具有瞬时并发量大、库存量少和业务逻辑简单等特点。设计一个秒杀系统需要考虑的因素很多,比如对现有业务的影响、网络带宽消耗以及超卖等因素。本文会讨论秒杀系统的各个环节可能存在的问题以及解决方案。
⑵秒杀系统的核心难点是并发量,如果不考虑并发问题,那么我们可以用如下图所示的简单的系统结构来实现秒杀系统,用户只有两个简单操作:刷新界面和秒杀按钮,服务端也只有两个服务接口:返回秒杀界面和处理秒杀逻辑。假设本文中秒杀商品有个,参与秒杀的用户有w个。
⑶但是在高并发场景下,这个系统会有很多问题,我们全文会针对这些问题——进行优化
⑷.大量用户同时刷新界面,会对服务器的带宽造成非常大的压力;
⑸.用户在秒杀前后可以多次重复点击按钮,造成很多不必要的请求;
⑹.用户可以通过脚本进行抢购,并且抢购成功率非常高;
⑺.服务端承受高并发请求,会出现响应过慢或失败等情况;
⑻.数据库承受高并发请求,会导致连接池耗尽和响应缓慢;
⑼.如果数据库更新设计得不合理,可能会出现超卖的情况;
⑽秒杀开始之前,用户都会请求秒杀界面,有的用户甚至会不断地刷新秒杀界面,W用户可能产生上千万次秒杀界面请求。秒杀界面往往包含很多静态资源,如果这些界面请求全部通过服务器获取,会造成大量的带宽消耗,甚至造成秒杀还没开始服务器就崩了的情况。对于网页这种静态资源的并发访问,业内早就有成熟的解决方案:内容分发网络(CDN)。我们可以在秒杀开始前,预先把网页的静态资源存放在CDN节点,用户在刷新界面时直接从CDN获取静态资源,从而降低刷新秒杀界面对服务器造成的压力。添加了CDN服务之后,秒杀界面有大量用户同时访问和刷新并不会给服务端带来多大压力。
⑾我们知道,秒杀系统往往会有一个秒杀按钮,如果不对按钮进行限制,可能存在以下问题:用户在秒杀开始前点击按钮,造成很多无用的请求;用户在秒杀开始后多次点击按钮,造成很多重复请求;所以我们可以对按钮做一些限制:秒杀开始前按钮不可用,用户点击一次秒杀按钮后,按钮也进入不可用状态。这种方式无法限制通过脚本请求后端的情况,但是可以限制正常用户的多次无效点击,大大降低请求量。
⑿普通情况下,用户在点击秒杀按钮的时候,前端会请求一个固定的URL,这个URL可以在前端界面查到。对于普通不懂技术的用户来说,这没有什么问题,如果用户稍微懂点Http协议,就可以在秒杀开始前拿到URL,在秒杀开始前或开始的毫秒级时间内请求秒杀链接,不仅会给服务端带来很大的压力,还会造成不公平现象:商品都被开脚本的人抢走了。
⒀为了避免这种现象,我们可以将URL动态化,即使秒杀系统的开发人员也无法在知晓在秒杀开始时的URL。具体实现方法是在获取秒杀URL的接口中,返回一个服务器端生成的随机数,并在下单URL中传递该参数完成下单。
⒁虽然说我上面通过动态URL避免了用户在秒杀开始前请求秒杀链接,但是用户还是可以通过脚本在秒杀开始的那一刻去请求秒杀连接,普通用户基本没有办法和脚本秒杀进行竞争。我们可以引入机器难以识别的验证码,用户在请求秒杀链接之前,需要填写验证码识别的结果,验证码错误的请求直接拒绝。使用验证码不仅可以增加脚本秒杀的难度,还可以降低请求的QPS,因为请求不再是在秒杀那一刻进来,而会被分散到填写验证码的时间段内。
⒂通过上面的步骤,我们可以减少很多重复请求和脚本请求,可以保证秒杀活动中一个人大致只会请求一次(脚本还是可以请求多次)。但是W人参与秒杀,每人请求一次秒杀链接也有将近W次请求,服务器还是扛不住。仔细分析之后可以发现,秒杀的商品只有个,最后成功的也只有个,那么我们W的请求是不是都有必要请求到秒杀服务器上呢?显而易见,我们没有必要把所有请求都打到秒杀服务器上,我们只需要保证有大于个请求打到秒杀服务器就可以保证秒杀的正常进行,所以我们可以在用户端和服务端添加一层过滤层,过滤层只要保证有个以上的请求能打到秒杀服务器端。
⒃我们可以使用Nginx服务器来构建过滤层,一个Nginx服务器也没法抗W的请求,我们假设每个Nginx服务器可以处理W的请求,那么我们就需要台Nginx。那么怎么用保证至少有个请求可以请求到后端呢?我们可以简单的让每个Nginx服务器只通过前个请求,后续请求直接返回降级界面。通过Nginx过滤,我们可以把W的请求过滤为个请求,大大减少了服务器端的压力。
⒄如果通过前面的过滤,请求量依旧非常大,如果数据库无法处理这些请求量,我们就需要在数据库之上添加一层Redis缓存了。单个Redis可以处理几万的QPS,如果预估请求的QPS大于几万,我们还可以使用Redis集群模式来增加Redis的处理能力。
⒅在Redis存放和售卖商品数目大小相同的数字,秒杀服务每次访问数据库之前,都需要先去Redis中扣减库存,扣减成功才能继续更新数据库。这样,最终到的数据库的请求数目和需要售卖商品的数目基本一致,数据库的压力可以大大减少。
⒆Redis原子性
⒇我们知道Redis是不支持事务的,所以可能出现扣减为负数的情况,这种情况下我们可以使用Lua脚本来保证一次扣减操作的原子性,从而保证扣减结果的正确性。
⒈通过Redis判断之后,去更新数据库的请求都是必要的请求,这些请求数据库必须要处理,但是如果数据库还是处理不过来这些请求怎么办呢?
⒉这个时候就可以考虑削峰填谷操作了,削峰填谷最好的实践就是MQ了。经过Redis库存扣减判断之后,我们已经确保这次请求需要生成订单,我们就可以通过异步的形式通知订单服务生成订单并扣减库存。